
Reinforcement Learning Based
Autopilot

Muhammad Rizwan Malik
rizwanm@usc.edu

Muhammad Oneeb Ul Haq Khan
mkhan250@usc.edu

Martin Huang
hhuang04@usc.edu

Krishnateja Gunda
kgunda@usc.edu

Rengapriya Aravindan
raravind@usc.edu

December 8, 2021

Engineering Design Document Version 2.0

Reinforcement Learning Based Autopilot 8th December 2021

Revision History

Date Version Description Author(s)

10/17/21 1.0 Mid-Term Submission Project Group

12/08/21 2.0 Final Submission Project Group

1

Contents

1 Introduction 4

1.1 Purpose . 4

1.2 Goal . 4

1.3 Definitions, Acronyms and Abbreviations 4

2 Prior Research 4

3 Background 5

3.1 X-Plane 11 . 5

3.1.1 Datarefs and Data Reference types 6

3.2 X-Plane Connect (XPC) . 6

3.3 OpenAI Gym . 7

4 Methodology 7

4.1 Overview . 7

4.2 Simulation Environment . 7

4.2.1 space definition.py . 8

4.2.2 parameters.py: . 8

4.2.3 xpc.py: . 8

4.2.4 xplane envBase.py: . 9

4.3 Reinforcement Learning . 10

4.3.1 REINFORCE . 10

4.3.2 Deep Deterministic Policy Gradient (DDPG) 11

4.3.3 Proximal Policy Optimization (PPO) 13

4.3.4 Soft Actor-Critic (SAC) . 15

5 Results and Analysis 17

5.1 REINFORCE . 17

5.2 Deep Deterministic Policy Gradient . 18

5.3 Proximal Policy Optimization . 20

2

5.4 Soft Actor-Critic . 21

6 Future Work 23

References 24

3

1 Introduction

1.1 Purpose

This Engineering Design Document (EDD) provides an overview of the Reinforcement
Learning (RL) Based Autopilot agent implemented on the X-Plane 11 flight simulator
as a course project for CS527 - Applied Machine Learning for Games at the University
of Southern California for the Fall 2021 term.

This EDD provides the necessary background context as well as a discussion on the
existing setup (i.e. existing code base, the environment and the tools used), including an
in-depth look at steps taken by the project team to design multiple RL agents capable
of autonomous flight on a flight simulator (X-Plane 11). This document will also touch
upon the design decisions made by the team and the reasoning behind them, as well as
reflect on the successes and failures.

1.2 Goal

The goal of this project is to be able to train Autopilot RL agents using neural networks
and Policy Gradient algorithms. The proposed autopilot should be able to perform
various aircraft maneuvers such as descent/ascent and left/right turns as required by
a given flight plan. During the course of this project, we have explored different RL
strategies in order to determine the most suitable approach for our particular use-case
vis-á-vis a comparative analysis.

1.3 Definitions, Acronyms and Abbreviations

• RL - Reinforcement Learning

• DDPG - Deep Deterministic Policy Gradient

• PPO - Proximal Policy Optimization

• SAC - Soft Actor Critic

• EDD - Engineering Design Document

• XP11 - X-Plane 11

• XPC - X-Plane Connect

• IAS - Intelligent Autopilot System

2 Prior Research

Past research in the field of autopilot system has been focused primarily on control
system theory. Classic and modern autopilots are based mostly on Proportional Inte-
grated Derivative (PID) controllers or Finite-State automation. However, very limited
research has been done in exploring self-learning or experiential learning autopilots. In
the past, one of the limiting factors has been computational intractability of the close to
infinite state-space of the real life flight dynamics model and another has been limited
research into efficient algorithms to handle large and continuous state spaces. Recent
efforts towards the development of Intelligent Autopilot System:

4

1. IAS based on imitation learning: This implementation is based on [1], where
a training dataset was first collected of a human pilot flying an aircraft on a
simulator. This dataset was then used to train an Artificial Neural Network (ANN)
based model. This report acts as a proof of concept that experiential learning can
be used to train neural networks to control an aircraft.

2. A Domain-Knowledge-Aided Deep Reinforcement Learning Approach
for Flight Control: This implementation is based on [10] where they leverage
domain knowledge to improve learning efficiency and generalisability of aircraft
control. This implementation employs a Markovian decision process with a proper
reward function, allowing reinforcement learning theory to be used. Domain knowl-
edge is also used to define the reward function by molding reference inputs in con-
sideration of crucial control objectives and using the shaped reference inputs in
the reward function.

3 Background

3.1 X-Plane 11

For our RL Agents’ environment, we will be using a flight simulator software. There are
many popular flight simulator software that many actual pilots and aviation enthusiasts
use. However for our particular case, we will be using X-Plane 11. X-Plane 11 allows us
many advantages over general flight simulators. X-Plane 11 allows users the capability
to read and write data to the simulator, which is discussed at length in 3.1.1. For this
reason, X-Plane 11 is a popular choice for many Aerospace researchers and engineers.

Another reason XP11 is preferred by researchers is because instead of calculating
aerodynamic forces such as lift and drag by using empirical data in pre-defined lookup
tables, as is done by general flight simulator software, XP11 solves aerodynamic equa-
tions in real time. This allows XP11 to keep the simulation as close to reality as possible.
It uses blade element theory, a surface (e.g. wing) may be made up of many sections
(typically 1 to 4), and each section is further divided into as many as 10 separate sub-
sections. After that, the lift and drag of each section are calculated, and the resulting
effect is applied to the whole aircraft. When this process is applied to each component,
the simulated aircraft will fly similar to its real-life counterpart.

Figure 1: X-Plane 11 Flight Simulator used for this project

5

3.1.1 Datarefs and Data Reference types

X-Plane provides data parameters which can be read from or written to the simulator
through UDP sockets. These Data Parameters are called data refs. The X-Plane API
allows the sharing of data with X-Plane as well as other plugins. The most common
use of the X-Plane APIs is to read data from X-Plane and change the values within
X-Plane.

Datarefs can be considered as variables or an object that represent a value. All of the
communication with the X-Plane takes place by reading and writing data references.
When we read a data reference, code inside X-Plane provides the value of the dataref.
If in the future the layout of the internal variables in X-Plane changes, the same data
references may be used to access the new variables.

Data Reference types:
Each data reference can be read in one or more formats. Data references are defined

via distinct bits in an enumeration; we can add them together to form sets of datatypes.

Name Type Writable Units Description

sim / flightmodel / position /
groundspeed

float n meters/sec The ground speed of the air-
craft

sim / cockpit2 / gauges / indi-
cators / altitude ft pilot

float n feet Indicated height, MSL, in feet

Table 1: Examples of Datarefs

3.2 X-Plane Connect (XPC)

There are different options to communicate with X-Plane. We can use our own utility
function and socket for communication between XP11 and the agent. Or use existing
plugins such as the NASA X-Plane Connect plugin which provides different function
calls to send/read current control information inside the simulator without the use of
sockets. XPC just references the Data references. The XPC Toolbox is an open source
research tool used to interact with XP11. XPC allows users to control aircraft and
receive state information from aircraft simulated in X-Plane using functions written in
C, C++, Java, MATLAB, or Python in real time over the network.

Figure 2: Connection of X-Plane with Python
via XPC.

Figure 3: Agent-Environment Interaction
Flow.

6

3.3 OpenAI Gym

The existing OpenAI Gym setup is a perfect addition to the suite of tools at our
disposal. In the basic model of Reinforcement Learning, the agent interacts with the
environment in discrete time steps. In each time step, the agent receives state and
reward from the environment. Then the agent decides the action based on it’s policy
and the environment outputs next state after executing the action. After executing the
specific action, XPC receives it and sends it to X-Plane using the prepared function.
After sending the action, X-Plane simulator calculates the new state from the flight
dynamics. XPC has a receiving function where we can get the information of the
aircraft like position, velocity and other settings. Using OpenAI Gym allows us to
introduce new RL algorithms in a truly plug-and-play fashion, which is infact its raison
d’être. The Gym set up allows us to reset the environment, take a step, calculate
reward, as well as get the current observation space. We discuss this implementation
in greater detail in 4.2.

4 Methodology

4.1 Overview

The solution to any game based RL training problem can be divided into the following
steps:

1. The first step is to configure the environment using which the agent will be trained.
In our case this includes setting up the communication link between the Python
script and the simulator. All the parameters will be passed through this link, i.e.
XPC.

2. One of the most important tasks in solving a problem using RL is defining the
reward function. It becomes even more important when dealing with a close-to-
reality and complicated environment like flight simulation. Reward function is the
only way an agent knows what is it supposed to learn and also plays a key role in
determining how quickly it learns it.

3. Artificial neural networks are good function approximators whenever trying to
learn complicated non-linear models.

4. Training the network based on policy gradient approach. Our network will basi-
cally output different actions that can be taken for a given observation and the
reward function will evaluate whether that particular action in the given state took
us closer to the target or not and that will be utilized to learn a policy for reward
maximization.

5. Once the network is trained, it will be tested and results will be compared against
the current data.

4.2 Simulation Environment

Reinforcement Learning problems require the agent to sense the environment, choose
an action after evaluating the current policy for the sensed state, perform that action
and sense the new state of the environment. Open AI provides an abstraction layer to

7

Action Space Parameter Type Range

Latitudinal Stick Box [-1,1]
Longitudinal Stick Box [-1,1]

Rudder Pedal Box [-1,1]
Throttle Box [-1,1]

Table 2: Action Space Parameters

perform these tasks in the form of Open AI Gym framework for several games and other
simplified environments. However, Gym does not have any environments for X-Plane
11 so we had to write our own environment following the Gym API guidelines to some
extent. The environment consists of following parts:

4.2.1 space definition.py

This file extends the definition of Gym environment spaces to our problem. The action
space is a 4 item box space and the observation space is an 8 item box space. The
action space consists tha parameters in Table 2.
The choice of observation parameters is moved mainly by the relevance of different
physical parameters to the actual aerodynamics model. Therefore the observation space
consists of parameters in Table 3

Observation Space Parameter Type Range

Indicated Airspeed Box [0,inf]

Vertical Speed Box [-inf,inf]

Altitude above MSL Box [0,inf]

Pitch Box [-180,180]

Roll Box [-180, 180]

Heading Box [-360, 360]

Angle of Attack Box [-180, 180]

Sideslip Angle Box [-180,180]

Table 3: Observation Space Parameters

However, for soft actor-critic agent we limit the observation space to only the first 3
datarefs in Table 3

4.2.2 parameters.py:

This is a utility file which contains dictionaries of datarefs which will be used by the
environment to get or set parameter values in the X-Plane 11 simulator. The datarefs
that are used in our observation and action space are as follows:

4.2.3 xpc.py:

This is the NASA Xplane Connect file which is used as an interface to facilitate com-
munication between the simulator and our agent (python script). Some of the functions
which we used are:

• getDREF(dref): gets a particular dataref from the simulator.

• getDREFs(dref list): gets a list of datarefs from the simulator.

8

DataRef Data Type Description

sim / flightmodel / position / indi-
cated airspeed

float Indicated airspeed of the aircraft

sim / flightmodel / position /
vh ind

float Indicated vertical speed of the
aircraft

sim / flightmodel / position / eleva-
tion

int Elevation of the aicraft above MSL

sim / flightmodel / position / theta float Pitch of the aircraft

sim / flightmodel / position / phi float Roll angle of the aircraft

sim / flightmodel / position /
true psi

float True heading of the aircraft relative
to true geographic north

sim / flightmodel / position / alpha float Angle of attach of the aircraft rela-
tive to the wind

sim / flightmodel / position / beta float Sideslip angle of the relative wind

Table 4: Observation Space Datarefs

• getCTRL(): gets the current position of controls in a list [latitudinal stick, logitu-
dinal stick, rudder pedal, throttle, gear, flaps, speedbrakes]

• sendCTRL(CTRL list): writes the control parameters in the simulator.

• pauseSim(bool): pauses the simulation. This does not actually pause the whole
simulator, it simply stops the physics engine of X-Plane 11. This is used when-
ever we need to perform the learn operation for the agent and then resuming the
simulation after that.

4.2.4 xplane envBase.py:

This is the main file of the environment which ties together the RL agent and the
X-Plane 11 simulator. This file has some of the functions of a typical Open AI Gym
environment file. The functions provided by the environment file include:

• connect(): This calls the X Plane Connect’s connect() function and sets up a
connection between the simulator and our environment.

• close(): This function disconnects the UDP connection between the simulator and
the environment.

• step(actions): This function accepts a list of actions as the argument and passes
those to the simulator and returns the [observation space, reward, done, info] to
the agent after those actions are performed. This function makes use of following
helper functions:

– getObservationSpace(): This passes the datarefs dictionary defined in param-
eters.py file to x Plane Connect and fetches the results.

– getReward(state): This function computes the reward for being the current
state. The reward function is defined as:

∗ reward = −20 for each timestep

∗ reward = +6000 for being inside the target zone

∗ reward = −
√
|current altitude− target altitude|

∗ reward = −100000 in case the aircraft crashes

9

∗ reward = −20000 if the episode and ends and the aircraft was not in the
target zone

– checkTerminalState(): This function sets the done state flag to indicate the
end of the episode.

• reset(): This function is called by the agent at the start of each episode and it
resets the environment and returns the initial state. A point which is pertinent to
mention here is that the whole training of the model is done using a situation file
of X-Plane, which is essentially a configuration file. However, X-Plane 11 and the
NASA X-Plane Connect do not provide any commandref API to reload a situation
file through Python script. Therefore, to solve this problem we used another
open source library written in Lua programming language called FlyWithLua.
FlyWithLua is loaded as a plugin when X-Plane is run and it keeps checking
the specified parameters regularly. Whenever the plane crashes or 2000 steps are
completed, our Python script sets a flag in the X-Plane and upon reading that flag
our Lua script reloads the situation file.

4.3 Reinforcement Learning

4.3.1 REINFORCE

REINFORCE is a Monte-Carlo variant of policy gradients (Monte-Carlo: taking ran-
dom samples). The agent collects a trajectory of one episode using its current policy,
and uses it to update the policy parameter. Since one full trajectory must be completed
to construct a sample space, REINFORCE is updated in an off-policy way. So, the flow
of the algorithm is:

Vanilla REINFORCE

for Episode = 1 ... 1000 do
Input : Initial observation
for Step = 1 ... 2000 do

Perform a trajectory roll-out using the current policy
Sample action values from the given normal distributions with µ
and σ values

Calculate reward
Store action taken and reward received

end for
Calculate discounted cumulative future reward at each step
Compute the loss for each step using the product of log probability of
the action taken and the discounted cumulative reward

Compute policy gradient and update the network parameters
end for

Implementation: Our implementation of the REINFORCE algorithm was done
using the following agent file.

1. REINFORCE Agent.py: The agent is divided into sections, the Policy Network
itself and the Training loop.

• Policy Network comprises of 4 layers, an input layer, 2 hidden layers and
an output later. The input layer is of size 8, followed by the hidden layers

10

of size 256 with a ReLU activation function each. The output layer is also of
size 8, however we have 2 different sets of outputs µ and σ. The µ values are
outputted as they are, however for the σ values are passed through an ELU
activation function.

• Training Loop does an off-policy roll-out for each episode, and then up-
dates the network parameters by calculating the loss for each step and then
computing the gradients once the episode has ended.

4.3.2 Deep Deterministic Policy Gradient (DDPG)

DDPG is an off-policy Actor-Critic Policy Gradient method that utilizes Q-Learning.
Actor-Critic methods are well-suited for problems dealing with continuous action spaces
[12]. Since we calculate the actions directly instead of their probability distributions,
DDPG is a deterministic method, hence its name Deep Deterministic Policy Gradient.
Because of its deterministic nature, there is not much room for exploration. In order
to cater to this, the authors of DDPG [11] introduce Ornstein-Uhlenbeck (OU) noise.
OU Noise has the desired property of approaching its mean (µ) as t→∞. In DDPG,
µ = 0, so that as learning continues the noise becomes closer to zero, and the exploratory
behaviour of the algorithm diminishes.

In this method there are two policy networks being trained simultaneously. One
network learns the actual policy to behave optimally given a state, this network is the
Actor. The second network learns the value function, i.e. its Q Value. This second
network is called the Critic because it criticizes how the Actor network evaluates the
rewards of a state while updating its parameters. In order to calculate the loss for the
Critic Network, we utilize 2 more networks, i.e. the Target Actor and Target Critic
networks. We utilize a Mean Squared Error (MSE) loss function for the Critic Network
to show roughly how closely Qφ is to satisfying the Bellman equation:

L(φ,D) = E
(s,a,r,s′ ,d)∼D

[(Qφ(s, a)−

(r + γ(1− d)max
a′

Qφ(s
′
, a
′
)))2]

Target Actor and Target Critic networks provide us with the target value:

r + γ(1− d)maxa′Qφ(s
′
, a
′
)

Given all of this, DDPG achieves its objectives by minimizing the MSE loss with
stochastic gradient descent between the target value and the output of the Critic net-
work.

In DDPG, we save the state, action taken, reward, the next state, denoted by state’,
and the terminal flag at every step within the episode in a buffer. After every step,
we then train our networks over a randomly sampled batch from this buffer. In our
implementation the batch size is 5000. The state and action values are used to generate
the critic value via the Critic network. The state’ values are used to generate the target
actions using the Target Actor network. The Target Critic network then uses the state’
and target actions to generate the target critic values. The Critic network then uses
the MSE of the critic value and target value, as specified in the previous equations as
its loss value and tries to minimize it. The Actor network uses −Q obtained from the

11

Critic network as its loss value. We then use a soft update approach to update the
Target Actor and Target Critic networks, using a factor τ .

The Target Critic θQ
′

is updated as follows:

θQ
′

= τθQ + (1− τ)θQ
′

The Target Actor θµ
′

is updated as follows:

θµ
′

= τθµ + (1− τ)θµ
′

DDPG is used in a continuous action setting and is an improvement over the vanilla
actor-critic. So the DDPG algorithm is:

DDPG

Input : initial policy parameter θ, Q function parameters φ, empty replay
buffer D

Set target parameters equals to main parameters θtarg = θ, φtarg = φ
while True do

Observe state s and select action a = clip(µθ + ε, -1, 1), where ε is
normal distribution

Execute a in the environment
Observe next state s′, reward r, and done signal d to indicate whether
s′ is terminal

Store s, a, r, s′, d in replay buffer D
If s′ is terminal, reset environment state
If it’s time to update then for Step = 1 ... 2000 do

Randomly sample a batch of transitions, B = (s, a, r, s′, d) from D
Compute targets: y(r, s′, d) = r + γ(1− d)Qφtarg(s′, µθtarg(s′))
Update Q function by one step of gradient descent using:
5φ

1
|B|

∑
(s,a,r,s′,d)(Qφ(s, a)− y(r, s′, d))2

Update policy by one step of gradient ascent using:
5φ

1
|B|

∑
sQφ(s, µθ(s))

Update target networks with: φtarg = ρφtarg + (1− ρ)φ,
θtarg = ρθtarg + (1− ρ)θ

end for
end while

Implementation: For all 4 networks being used in DDPG, we utilize a network
architecture of 8× 400× 300× 4. The input layer has 8 nodes for the observation space
parameters, the 2 hidden layers have 400 and 300 nodes respectively and the output
layer has 4 nodes, one for each action. The Actor and Target Actor networks use ReLU
as the activation function in hidden layer 1 and 2, and a tanh activation function for the
values ofµ, bounding them between -1 and +1. The Critic and Target Critic networks
also use ReLU as their activation functions.

DDPG has a lot of different hyperparameters, and finding the optimal combination
is a challenge of its own. For the Actor and Target Actor networks we started with a
learning rate eta = 2.5×10−5, and for the Critic and Target Critic networks we started
with a learning rate eta = 2.5× 10−4. However, we soon determined, given our reward

12

structure, these learning rates were too high and so they were changed to 2.5 × 10−7

and 2.5 × 10−6, respectively. The buffer was set to 1 × 106 steps, with a batch size of
5000. Since the training at every step, greatly reduced our training pace, we changed
the frequency to every 20 steps. The soft update factor τ was set to 0.001.

1. DDPG Main.py: the main training file, which interacts with the X-plane en-
vironment setup, contains the initial parameters of DDPG, the training loop and
also makes calls to the helper functions in utils.py file for plotting and saving data.

2. DDPG Agent.py: contains the Agent, ActorNetwork, CriticNetwork, OUAction-
Noise, and ReplayBufffer classes.

All of the functionality from the classes comes together in our Agent class. We initial-
ize the Critic and Target Critic networks as instances of the CriticNetwork class, and
the Actor and Target actor networks as instances of the ActorNetwork class, as well as
initialize the noise and memory buffers as instances of the ReplayBuffer and OUAction-
Noise classes, respectively. When choosing an action we call our chooseactionfunction, whichsimplydoesaforwardpassthroughourActornetwork.Ateverystep, wecalltherememberfunctionwhichsimplystoresourstate, action, reward, new stateandterminalflaginourmemorybuffer.Therealmagichappenswithinthelearnfunctionwherewetakearandombatch(ofsize5000)ofthestoredtransitionsfromourmemorybuffer, andusethesetodoforwardpassesthroughtheCritic, TargetActorandTargetCriticnetworks, andbackwardpropagatethecalculatedlossesforall4networks.

4.3.3 Proximal Policy Optimization (PPO)

Proximal Policy Optimization [8] belongs to a family of Policy Gradient based Rein-
forcement Learning algorithms called Actor-Critic methods. Actor-Critic methods are
better suited for problems dealing with continuous action spaces. In Actor-Critic meth-
ods there are two policy networks being trained simultaneously.
One network learns the actual policy to behave optimally given a state, this network
is the Actor. The second network learns the value function of the underlying MDP,
this network is called Critic because it criticizes how the Actor network evaluates the
rewards of a state while updating its parameters.

Figure 4: Actor-Critic Methods

To understand the main difference between vanilla REINFORCE algorithm and
PPO, we need to look into the optimization objectives of both of these methods. The
loss function for vanilla policy gradient is given as:

LPG(θ) = Êt[logπθ(at|st)Ât]
In the above equation LPG(θ) is the policy loss and it is equal to the expected value of
taking action at in state st. The expected value is weighted by the estimated advantage

13

function Ât, which in case of vanilla policy gradient techniques like REINFORCE is
simply the discounted rewards. However, in the paper [9] the authors introduced a
concept of Trust Regions to limit the policy gradient step so it does not move too much
away from the original policy, causing overly large updates that often ruin the policy
altogether.
For this, they define r(θ) as the probability ratio between the action under the current
policy and the action under the previous policy.

rtθ =
πθ(at|st)
πθold(at|st)

Given a sequence of sampled actions and states, r(θ) will be greater than one if the
particular action is more probable for the current policy than it is for the old policy. It
will be between 0 and 1 when the action is less probable for our current policy. Since
our action space is continuous and we sample the actions from 4 uncorrelated normal
distributions. Therefore, instead of directly dividing the probabilities of actions, we
take exponentials of probability density functions.
The loss function is defined using the probability ratio as follows:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)]

Here, the expectation is being computed over a minimum of two terms: normal policy
gradient objective and clipped policy gradient objective. The second term plays a key
role where the objective value is clamped between 1-epsilon and 1+epsilon, epsilon
being the hyperparameter. The paper [8] uses the ε = 0.2.
One aspect of PPO which makes it more suitable for our problem is its sample efficiency.
It makes use of a memory replay buffer to store the sample actions and then trains
the model for several epochs over that data before discarding it, unlike REINFORCE
algorithm where an experience trajectory is used only once to train.
The algorithm from the paper is as follows:

PPO with clipped objective

Input : initial policy parameters θo, clipping threshold ε
for k = 0, 1, 2, ... do

Collect set of partial trajectories Dk on policy πk = π(θk)

Estimate advantages Âπk using any advantage estimation algorithm
Compute policy update

θk+1 = argmaxθLCLIPθk
(θ)

by taking K steps of minibatch SGD via Adam where

LCLIPθk
(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)]

end for

Implementation: We followed the standard implementation of a PPO agent and
implemented PPO in three different ways.

• PPO in Continuous Action Space

14

• PPO in Discrete Action Space using 4 networks

Implementation is similar for both the agents. However, there are differences in the
way the actor network predicts the outputs which is discussed in item 2 of PPO Agent.py.
Our PPO code consists of following files:

1. PPO main.py: This file sets training and batch sizing parameters for our agent.
These parameters include the number of episodes, batch size, mini batch size &
epochs. It initializes the environment as well as the PPO agent. The main training
loop is inside this file which is run num episodes times and during each episode,
the inner while loop runs until the done flag is raised. This file also handles making
calls to helper functions in utils.py file for plotting and saving data.

2. PPO Agent.py: This file contains three classes namely PPO Memory, Actor-
Network, CriticNetwork.

• PPO Memory initializes all the data structures (in this case python lists) to
store the agent actions and experiences through a partial trajectory.

• ActorNetwork initializes the actor network which consists of 4 layers of neu-
rons including 2 hidden layers of each 256 neuron. The activation functions
between the hidden layers are ReLU(). The output layer and activations for
3 implementations are as follows:

– PPO in continuous action space: The output consists of 8 units repre-
senting µ and σ for the 4 actions. At the output layer for µ there is no
activation function. However, the output units for σ are activated through
ELU(x) + 1.0001 function to keep the σ positive. These outputs are then
used to construct the Gaussian Distributions from which actions are sam-
pled.

– PPO in discrete action space with 4 networks: This network is designed in
a way that the main agent consists of 4 actor networks. Each actor network
is trained to predict one of the 4 actions. The action space is discretized
to 11 equidistant points between [-1, 1]. Output layer is activated using
Softmax activation function to output a discrete probability distribution
function over the action space.

• CriticNetwork : This network takes in the environment state at the input layer
and gives out the value function approximation at the output layer. This
network has 1 hidden layer of 256 neurons with Relu activation.

the workhorse of this file is the learn() function. This function is called by
the PPO main.py file whenever the PPO Memory buffer is full. This function
makes use of some utility functions to divide the experience relay memory into
mini batches. For each batch, this function passes each state through ActorNet-
work and Critic Network then for each batch calculates the advantage estimate.
Then using the new and old log probabilities it computes the probability ratio and
clipped loss. This loss is then backpropagated through the respective networks and
the parameters are updated.

4.3.4 Soft Actor-Critic (SAC)

Model-free deep reinforcement learning (RL) algorithms have been shown to be able to
solve a wide range of challenging decision making and control tasks. However, these

15

methods typically suffer from two major challenges: very high sample complexity and
brittle convergence properties, which demand an intense hyperparameter tuning. Both
of these challenges severely limit the applicability of such methods to complex, real-
world problems. Soft actor-critic, on the other hand, is an off-policy actor-critic deep
RL algorithm based on the maximum entropy reinforcement learning framework. In
this framework, the actor aims to maximize expected reward while also maximizing
entropy. That is, to succeed at the task while acting as randomly as possible. Soft
Actor-Critic algorithm utilizes a parameterized state value function Vψ(st), soft Q-
function Qθ(st, at), and an action policy πφ(at|st). The parameters of these networks
are ψ, θ, and φ. For example, the value functions can be modeled as expressive neural
networks where the network predicts a value function for the given state or state-action
pair, and the policy as a Gaussian with mean and covariance given by neural networks.
Based on the update equations of these parameters given in the paper [7], the algorithm
can be written as:

Soft Actor-Critic

Initialize parameter vectors ψ, ψ, θ, φ.
for each iteration do

for each environment step do
at ∼ πφ(at|st)
st+1 ∼ p(st+1|st, at)
D ← D ∪ {(st, at, r(st, at), st+1)}

end for
for each gradient step do
ψ ← ψ − λV ∇̂ψJV (ψ)

θi ← θi − λQ∇̂θiJQ(θi)fori ∈ {1, 2}
φ← φ− λπ∇̂φJπ(φ)

ψ ← τψ + (1− τ)ψ
end for

end for

The above algorithm makes use of two Q-functions to mitigate positive bias in the
policy improvement step that is known to degrade performance of value based meth-
ods. In particular, the two Q-functions are parameterized, with parameters θi, and are
trained independently to optimize JQ(θi). Minimum of the two Q-values is used in the
loss functions of value and policy gradients. The method alternates between collecting
experience from the environment with the current policy and updating the function ap-
proximators using the stochastic gradients from batches sampled from a replay buffer.
In our implementation, we take a single environment step followed by 5 gradient steps.

Implementation: We followed the standard implementation of SAC agent. Our
SAC code consists of following files and their respective functionalities:

1. buffer.py: This file initializes the memory buffer, a cyclic buffer of size max size
for storing experiences. Experience is defined as a collection of {st, at, rr, st+1, donet}
at each time-step. It takes in parameters max size, input shape, action shape. It
includes helper functions to sample random batches from the memory buffer and
a function to store each experience.

2. networks.py: This file contains the actor, critic and value network architectures

16

and related functions.

• Actor Network: It is a fully connected neural network which takes state as
input and produces µ and σ corresponding to the 4 actions at the output
layer. The architecture consists of 3 hidden layers of 256 units in each layer.
Input layer contains 3 units and output layer contains 8 units. Hidden layer
outputs are activated using ReLU function.

• Critic Network: Critic network takes state and action as input and produces
a single output representing the Q-value of the state action pair. It contains
same hidden layers as the actor network. However, the input layer consists
of 3+4 (representing 3 observation space and 4 action space) units and the
output layers contains just 1 unit.

• Value Network: Value network takes state as input and produces a single
value as output representing the value function of the state. It contains same
hidden layers as the actor network. However, the input layer consists of 3
units (representing 3 observation space) and the output layers contains just 1
unit.

The function sample normal() returns action for a given state. Whereas, the
function choose test action() is used during testing and it returns the action value
for a given state while test. It also includes functions for saving and loading the
models.

3. sac torch.py: This file contains the Agent class and all of the associated func-
tions. The Agent class’ attributes include actor, critic& value networks as well as
all the hyperparameters. The workhorse of Agent class is learn() function. This
function performs all gradient descent and network parameters update after each
environment step. During each gradient step, it calls the memory buffer class
function to draw a random batch from the replay buffer and performs network
updates as described in the algorithm above.

5 Results and Analysis

5.1 REINFORCE

REINFORCE is widely known as a vanilla implementation of Policy Gradient algo-
rithms. It is not an algorithm of choice for many RL applications because it is very
slow to converge. We see this behaviour replicated in our implementation as well. Since
both our observation and action spaces are extremely large, this behaviour of REIN-
FORCE results in our agent being frustratingly slow to learn. We have been able to
train the agent for a maximum of 2000 episodes, however even that has proven to be
insufficient. There have been some promising results and we have run several different
iterations of REINFORCE, however none has proven to be satisfactory. The conclusion
drawn from this is that our focus needs to shift towards more efficient algorithms like
DDPG and PPO, which should learn the objective much faster.

In Figure we see some promising trends. Our agent is tasked to learn to fly at an
altitude of 2500m. The agent needs to descend from 3660m, its starting point, descend
to 2500m and maintain that altitude. Initially, the agent crashes the plane consistently,
as is observed in Figure 5a, however it eventually learns to not crash and then eventually

17

also starts trying to come back to 2500m after it has descended past it, as observed in
Figure 5b. However, instead of improving upon this, we see in Figure 5c that the agent
continues to descend past the target altitude. This trend continues for several hundred
more episodes, after which the training for this run was terminated.

(a) Episode 30 (b) Episode 120 (c) Episode 240

Figure 5: Altitude of the aircraft at each time step for a given episode

5.2 Deep Deterministic Policy Gradient

We analyze the performance of the agent using five different metrics. The first metric is
the trajectory of the aircraft during each episode. The second is the difference between
the aircraft’s altitude at the end of the episode and the specified target altitude. The
third is the number of successful steps the aircraft takes in one episode. The fourth
is the running average of the reward accumulated during an episode for the last 100
episodes. The last metric are the loss values for the Critic and Actor networks.

In our initial implementation, we observed a lot of promising results. In the first 500
episodes of training, the plane keeps crashing, as is shown in Figure 7a. However we
see a marked improvement in the flight trajectory as we get closer to 2000 episodes of
training, confirmed by Figure 7c.

(a) Episode 0 - 499 (b) Episode 500 - 999 (c) Episode 1500 - 1999

Figure 6: DDPG - Number of Successful Steps

As we continued to train the agent, upto episode 7780, we saw a deterioration in
performance which the agent did not recover from. This, we learnt, was because our
hyperparameters were not optimized. One of the hyperparameters that needed to be
corrected was the learning rate, which was not adequately chosen for our reward struc-
ture.

We restarted training our agent with a much smaller learning rate η = 2.5 × 10−7

for our Actor and Target Actor networks and η = 2.5× 10−6 for our Critic and Target
Critic networks. We also redesigned our episode structure so that the episode started
with our aircraft within the target zone, and it would end once the aircraft flew outside

18

(a) Episode 0 - 499 (b) Episode 500 - 999
(c) Episode 1500 - 1999

Figure 7: DDPG - Altitude During Episode

the target zone. The rationale behind this was to encourage the agent to fly within the
target zone for longer.

Our focus now was to use the loss functions of the Actor and Critic networks as
guides to improve the performance. By tweaking the learning rate we were able to see
an improved performance in terms of loss, however the agent’s performance still did not
achieve satisfactory levels. We tried different values and combinations of learning rates,
while also scaling the reward value. In doing so, we were able to improve the Critic
network loss curve as can be seen from the change from Figure 8a to Figure 8b. However,
due to time constraints, we were unable to perform an exhaustive grid search allowing
us to determine optimal combination of the learning rates and other hyperparameters.
Because of this reason, DDPG was unable to yield satisfactory results, although we
were very optimistic about the direction the agent was headed in.

(a) Actor η = 2.5× 10−7 Critic η = 2.5× 10−6 (b) Actor η = 2.5× 10−5 Critic η = 2.5× 10−5

Figure 8: DDPG - Actor, Critic Network Losses

19

5.3 Proximal Policy Optimization

Results and analyses of different iterations of PPO algorithm are as follows

1. PPO in continuous action space ran for 500 episodes with following hyperparam-
eters:

• memory buffer = 1000

• mini batch Size = 100

• n epoch = 5

• learning rate (α) = 0.0003

• epsilon (ε) = 0.2

Average scores for the last 100 episodes did not show a lot of variation as shown
in Figure 11 and the descent trajectory that the aircraft followed did not change
either over the course of 500 episodes which can be observer in Figure 9. We
realised that the memory buffer was very small and the number of epochs that
we ran gradient descent for was also very small, hence the agent could not learn
any patterns from the data.

(a) Episode 10 (b) Episode 490

Figure 9: PPO Continuous - Altitude of the aircraft at each time step

Figure 10: Number of Successful steps in each
episode

Figure 11: Avg score of last 100 episodes

2. PPO in discrete action space with 4 networks was run for close to 1700 episodes
and it showed some good results with following hyperparameters:

20

• memory buffer = 100000

• mini batch Size = 5000

• n epoch = 50

• learning rate (α) = 0.0003

• epsilon (ε) = 0.2

We can see in Figure 12 that the number of successful steps in each episode in-
creased significantly as well as the trajectory of the aircraft moved closer to the
target zone. During training the plane started crashing at one point, however, it
recovered and improved performance as can be seen in the following pictures.

(a) Episode 0 - 280 (b) Episode 281 - 1030 (c) Episode 1031 - 1640

Figure 12: PPO Discrete - Successful Steps during each episode

As discussed earlier, on-policy algorithms like PPO are very inefficient when it
comes to sample complexity. Since, the whole memory buffer needs to be cleared
after each gradient descent step. Therefore, it can be very difficult to perform
hyperparameter tuning during a limited time. Hence, we decided to implement
the state of the art Soft Actor-Critic algorithm instead of tuning PPO.

5.4 Soft Actor-Critic

We performed 2 iterations of Soft Actor-Critic algorithm by changing some hyper-
paramters. The second iteration showed good results. The hyperparameters that were
used during the first iteration are as follows:

• memory buffer = 1000000

• batch Size = 1024

• learning rates (α, β) = 0.0003

• γ = 0.99

• target value update smoothing constant (τ) = 0.005

• reward scale = 1.0

During the training the agent seemed very conservative in exploration despite being
formulated on entropy maximization framework. In the Figure 13 it can be observed
that the trajectory of the aircraft during the episodes 663-673 is almost the same as
that during the episodes 11-21. The scores also plateaued as can be seen in the Figure
15.

21

(a) Episode 11-21 (b) Episodes 663-673

Figure 13: SAC Reward Scale 1 - Altitude of the aircraft during an episode

Figure 14: Number of Successful Figure 15: Avg score of last 100 episodes

SAC paper [7] mentions that the most important hyperparameter that can be tuned
to improve performance of the agent and balance exploration vs exploitation is reward
scale. The paper states that the range of reward scale is dependent on every environ-
ment, however, values between 10 - 100 result in better performance. We performed
the second training iteration using reward scale of 10. We can observe from Figure 16
that the agent not only started exploring more, but it also recovered from crashed very
quickly, since the reward was being weighted more while performing gradient descent
of critic network.
Another thing that is worth noting in the above figures is oscillations in the trajectory
of the aircraft. When the aircraft tries to recover from the dive, it pitches up, but dur-
ing the pitch up motion if the agent predicts a severe action for aileron then the aircraft
starts to bank as well. During the bank movement the it loses energy and therefore less
engine power is available to recover and reorient. These oscillations eventually result
in an overall loss of altitude.
Since we had very limited amount of time available, therefore, to make the model sim-
pler for the agent we reduced the observation space to 3 parameters and also included a
hard coded condition for aileron. This hard coded rule keeps the aircraft’s bank angle
within ±10◦.

22

(a) Episode 1-11 (b) Episodes 321-331

Figure 16: SAC Reward Scale 10 - Altitude of the aircraft during an episode

The model was trained and tested. Following three tests were performed with an
initial altitude of 1836m. The agent was successful in all these tests.

• Descend to an altitude of 1600m

• Descend to an altitude of 1200m

• Climb to an altitude of 2000m

Results of the above tests were shown in the form of a video.

6 Future Work

Over the course of the project we worked on different approaches to develop an RL
agent with the ability to learn to change altitude based on on-policy as well as off-policy
algorithms. The experiments were a strong indicator towards the ability of off-policy
algorithms to learn the models quickly.
Future efforts will include work on a more intuitive reward function representative of
the experiment goals in a better way. We have seen that off-policy algorithms are
very sensitive to hyperparameters. Therefore, significant improvement in results can be
expected with careful hyperparameter tuning. During the semester we were constrained
by time as well as compute power. Exploring cloud resources compatible with the
simulator can provide an opportunity to not only improve the compute efficiency but
also to run multiple experiments in parallel.
The results which we see after hard-coding aileron action to maintain the attitude
during the experiment is indicative that curriculum learning can be a very interesting
approach to explore in this context. It can be extended to include a wider spectrum
of tasks. A curriculum based on increasingly complicated tasks assisted by relevant
training data for learning by imitation can help the agent learn more complicated and
realistic tasks including taking off, waypoint following and flying in close formation.

23

References

[1] Haitham Baomar and Peter J Bentley. “An Intelligent Autopilot System that learns piloting
skills from human pilots by imitation”. In: 2016 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE. 2016, pp. 1023–1031.

[2] Jean de Becdelievre et al. “Autonomous Aerobatic Airplane Control with Reinforcement Learn-
ing”. In: (2016).

[3] Yenn Berthelot. AI learns to fly — Airplane simulation and Reinforcement Learning. [Online;
accessed 26-April-2020]. 2020.

[4] Yenn Berthelot. AI learns to fly — Create your custom Reinforcement Learning environment
and train your agent. [Online; accessed 25-August-2020]. 2020.

[5] Deep Deterministic Policy Gradient. https://spinningup.openai.com/en/latest/algorithms/
ddpg.html.

[6] William Good. FlyWithLua for X-Plane 11. 2020.

[7] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep reinforcement learn-
ing with a stochastic actor”. In: International conference on machine learning. PMLR. 2018,
pp. 1861–1870.

[8] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347
(2017).

[9] John Schulman et al. “Trust region policy optimization”. In: International conference on machine
learning. PMLR. 2015, pp. 1889–1897.

[10] Hyo-Sang Shin, Shaoming He, and Antonios Tsourdos. “A Domain-Knowledge-Aided Deep Re-
inforcement Learning Approach for Flight Control Design”. In: arXiv preprint arXiv:1908.06884
(2019).

[11] David Silver et al. “Deterministic policy gradient algorithms”. In: International conference on
machine learning. PMLR. 2014, pp. 387–395.

[12] Lillian Weng. Policy Gradient Algorithms. https://lilianweng.github.io/lil-log/2018/
04/08/policy-gradient-algorithms.html.

[13] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning”. In: Machine learning 8.3 (1992), pp. 229–256.

[14] X-Plane Connect. https://github.com/nasa/XPlaneConnect.

[15] X-Plane Datarefs. https://developer.x-plane.com/datarefs/.

[16] Takeshi Tsuchiya Yuji Shimizu. “Construction of Deep Reinforcement Learning Environment for
Aircraft using X-Plane”. In: Machine learning 8.3 (2020), pp. 112–119.

24

https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://github.com/nasa/XPlaneConnect
https://developer.x-plane.com/datarefs/

	Introduction
	Purpose
	Goal
	Definitions, Acronyms and Abbreviations

	Prior Research
	Background
	X-Plane 11
	Datarefs and Data Reference types

	X-Plane Connect (XPC)
	OpenAI Gym

	Methodology
	Overview
	Simulation Environment
	space_definition.py
	parameters.py:
	xpc.py:
	xplane_envBase.py:

	Reinforcement Learning
	REINFORCE
	Deep Deterministic Policy Gradient (DDPG)
	Proximal Policy Optimization (PPO)
	Soft Actor-Critic (SAC)

	Results and Analysis
	REINFORCE
	Deep Deterministic Policy Gradient
	Proximal Policy Optimization
	Soft Actor-Critic

	Future Work
	References

