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Abstract

State-of-the-art autopilot systems rely on
control system theory, an approach which
becomes extremely complex as demands
from it increase. Our goal for this project
is to develop a Reinforcement Learning
(RL) agent, capable of learning basic
flight maneuvers within a simulated en-
vironment (X-Plane 11). To this end,
we use four RL algorithms, namely, RE-
INFORCE, Proximal Policy Optimization
(PPO), Deep Deterministic Policy Gradi-
ent (DDPG) and Soft Actor-Critic (SAC).

Keywords— Reinforcement Learning (RL),
REINFORCE, Proximal Policy Optimization
(PPO), Deep Deterministic Policy Gradient
(DDPG), Soft Actor-Critic (SAC)

1 Introduction

With the recent advances in the field of Reinforce-
ment Learning and Deep Learning there has been
an increased interest in solving problems which
were considered intractable in the past. One of
the common themes in the current research has
been to develop models which can learn and per-
form tasks with close-to-human performance. The
problem that is discussed in this paper relates
to development of a intelligent autopilot system
based on reinforcement learning.

Human pilots are trained to handle flight un-
certainties or emergency situations such as severe
weather conditions or system failure. In contrast,
Automatic Flight Control Systems are highly lim-
ited in a way that they are only capable of perform-
ing minimal piloting tasks in non-emergency con-
ditions. Strong turbulence, for example, can cause
the autopilot to disengage or even attempt an un-
desired action which could jeopardise flight safety.
Moreover, the current regulatory requirements by
International Civil Aviation Organization (ICAO)

require constant monitoring of the system and the
flight status by the flight crew to react quickly to
any undesired situation or emergencies. On the
other hand, trying to cater for every possible un-
certainty in the flight conditions by hard-coding it
into the autopilot is not only impossible but futile
as well.

This work aims to address these problems by
proposing an RL based Intelligent Autopilot Sys-
tem (IAS) capable of performing different flight
maneuvers. The proposed model will be trained
and tested using X-Plane 11, an extremely pop-
ular and extensible flight simulator used by both
aviation enthusiasts and professionals. Instead of
having the agent learn by imitation as done in the
past [1], our proposed IAS will learn by perform-
ing actions by following a policy and then improv-
ing the policy based on the rewards and penalties
it receives from its environment.

This paper describes the overview of the X-
Plane environment and the interaction of X-Plane
via X-Plane Connect (XPC), as well as the im-
plementation of RL algorithms and an in-depth
discussion on the performance of each algorithm.
This paper is structured as follows: Section 2 cov-
ers the relevant prior research, Section 3 deals
with the specification and overview of the environ-
ment used for training the agent, Section 4 con-
cerns discussion of the algorithms which were im-
plemented and Section 5 presents results and anal-
ysis.

2 Related Work

Past research in the field of IAS has been focused
primarily on control system theory. Classic and
modern autopilots are based mostly on Propor-
tional Integrated Derivative (PID) controllers or
Finite-State automation. However, very limited re-
search has been done in exploring self-learning or
experiential learning autopilots. In the past, one
of the limiting factors has been computational in-
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tractability of the close to infinite state-space of
the real life flight dynamics model and another has
been limited research into efficient algorithms to
handle large and continuous state spaces.

Recent efforts towards the development of In-
telligent Autopilot System include:

1. IAS based on imitation learning: This im-
plementation is based on [1], where a training
dataset was first collected of a human pilot
flying an aircraft on a simulator. This dataset
was then used to train an Artificial Neural
Network (ANN) based model. This report
acts as a proof of concept that experiential
learning can be used to train neural networks
to control an aircraft.

2. A Domain-Knowledge-Aided Deep Rein-
forcement Learning Approach for Flight
Control: This implementation is based on
[8] where they leverage domain knowledge
to improve learning efficiency and generalis-
ability of aircraft control. This implementa-
tion employs a Markovian decision process
with a proper reward function, allowing re-
inforcement learning theory to be used. Do-
main knowledge is also used to define the
reward function by molding reference inputs
in consideration of crucial control objectives
and using the shaped reference inputs in the
reward function.

3 Data and Environments

3.1 Overview of X-Plane 11
The environment in which the RL agents are
trained is X-Plane 11 flight simulator. There are
many other commercial flight simulators avail-
able, but we used X-Plane because it provides the
capability to read and write live data from the sim-
ulator via UDP sockets. Also, unlike other flight
simulators which calculate aerodynamic forces
such as lift and drag by using empirical data in pre-
defined lookup tables, X-Plane 11 solves aerody-
namic equations in real time using blade-element
theory. This allows X-Plane to simulate the flight
conditions as close to reality as possible.

3.2 X-Plane Connect (XPC)
X-Plane 11 allows live data to be read and writ-
ten in the form of data-references (datarefs) via
UDP sockets. However, instead of focusing on
writing sockets we used an existing plugin called

Figure 1: X-Plane 11 Flight Simulator used for
this project

NASA X-Plane Connect (XPC). XPC was devel-
oped by the NASA Ames Research Center Diag-
nostics and Prognostics Group. It provides an ab-
straction layer between the environment and the
flight simulator. Its API provides different func-
tion calls to send/receive current datarefs to and
from the simulator without the need to dive into
socket programming.

The XPC API, however, does not provide func-
tionality to reload the X-Plane 11 flight configura-
tion file i.e. the situation file, with file extension
.sit. Therefore, another plugin called FlyWithLua
is used to interact with the simulator and reload the
situation file whenever a terminal state is reached.

Figure 2: Agent-Environment InteractioFlow.

4 Methods

A reinforcement learning problem is generally
modeled as a Markov Decision Process (MDP).
An MDP is a process that takes an agent from one
state to another, whereby the transition probabil-
ities between different states depend only on the
current state and the action the agent takes. For
each state transition, the agent is given a reward
rt. The aim of the agent is to maximize the sum of
future discounted rewards, also known as the gain
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(G), at every timestep t:

Gt =
∞∑
k=t

rkγ
k−t

γ is the discount factor, which controls how
rewards are weighed. A lower discount factor
means that immediate rewards are preferred, while
a discount factor close to 1 should be used for
environments in which actions have long-lasting
consequences.
A generalized solution of any game based RL
training problem can be divided into the following
parts:

1. The first step is to configure the environment
using which the agent will be trained. In our
case this includes setting up the communica-
tion link between the Python script and the
simulator. All the parameters will be passed
through this link, i.e. XPC.

2. One of the most important tasks in solv-
ing a problem using RL is defining the re-
ward function. It becomes even more im-
portant when dealing with a close-to-reality
and complicated environment like flight sim-
ulation. Reward function is the only way
an agent knows what it is supposed to learn
and also plays a key role in determining how
quickly it learns it.

3. Artificial neural networks are good function
approximators whenever trying to learn com-
plicated non-linear models. Therefore, all
the algorithms discussed in this paper are im-
plemented using multilayer perceptrons with
non-linear activation functions.

4. The algorithms discussed in this paper are
based on policy gradient approach wherein
the agent attempts to learn the actual policy
which outputs actions, instead of learning the
value functions. The network will output dif-
ferent actions that can be taken for a given ob-
servation and the reward function will evalu-
ate whether that particular action in the given
state took us closer to the target or not and
that will be utilized to learn a policy for re-
ward maximization.

5. Once the network is trained, it will be tested
and results will be compared against the cur-
rent data.

4.1 Simulation Environment
We modeled the problem as an episodic Markov
Decision Process (MDP) in which the environ-
ment is reset once the agent steps into a terminal
state. Such problems require the agent to sense
the environment, choose an action after evaluat-
ing the current policy for the sensed state, perform
that action and sense the new state of the environ-
ment until the episode terminates. Open AI pro-
vides an abstraction layer to perform these tasks in
the form of Open AI Gym framework for several
games and other simplified environments. How-
ever, Gym does not have any environments for X-
Plane 11 so we interfaced our own environment
following the Gym API guidelines.

4.1.1 Observation Space
The observation space for the problem includes
following flight parameters: (i) indicated airspeed,
(ii) vertical velocity, (iii) relative altitude from the
target altitude, (iv) pitch angle θ, (v) roll angle φ,
(vi) true heading ψ, (vii) angle of attack α, (viii)
side-slip angle β. The observation was scaled in
an attempt to keep the input values between {0,
1.0}. In order to scale the observation a linear
transformation was applied on each parameter of
the observation space to bring the values inside
{0.0, 1.0}

4.1.2 Action Space
The actions which are available to the agents are:
(i) latitudinal stick for pitching motion, (ii) longi-
tudinal stick for rolling motion, (iii) rudder pedals
for yawing motion, (iv) throttle. The values for
the first three actions are in the range [-1, 1] and
for throttle it is [0, 1].

4.1.3 Rewards Function
The following reward function was implemented
for the RL agent to be able to learn to maintain the
target altitude:

• reward =

−
√
|current altitude− target altitude|

for every step when the aircraft is not
in the target zone, which is defined as:
(target altitude± 100)

• reward = +6000 for being inside the target
zone

• reward =−100000 in case the aircraft crashes
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• reward =−20000 if the episode and ends and
the aircraft was not within the target zone

4.2 Reinforcement Learning Agents
Policy Gradient algorithms are a branch of RL
algorithms which focus on optimizing the pol-
icy. Policy Gradient algorithms are well-suited for
continuous spaces, since value-based algorithms
become computationally intractable because they
have to estimate the values of infinite actions and
states. Naturally, since our problem requires us to
simulate real-world states and actions, we have ex-
plored the implementation of various Policy Gra-
dient algorithms. The 4 different Policy Gradient
methods we have implemented are: REINFORCE,
PPO, DDPG and SAC.

4.2.1 REINFORCE
4.2.1.1 Algorithm REINFORCE is a Monte-
Carlo variant of policy gradients (Monte-Carlo:
taking random samples). The agent collects a tra-
jectory of one episode using its current policy, and
uses it to update the policy parameter. Since one
full trajectory must be completed to construct a
sample space, REINFORCE is updated in an off-
policy manner.

During a given episode, the neural network
would output a distribution N(µ, σ2) for each ac-
tion space item for a given state. A value would
then be sampled from each of the 4 distributions,
thus determining the action the agent would take.
A reward would be collected for the action taken
and stored along with the probability of the action
taken. Once the episode/trajectory was completed,
the loss for each step would be calculated.

The loss function for REINFORCE, a vanilla
Policy Gradient implementation, is given as:

LPG(θ) = Êt[logπθ(at|st)Ât]

In the above equation LPG(θ) is the policy loss
and it is equal to the expected value of taking ac-
tion at in state st. The expected value is weighted
by the estimated advantage function Ât, which in
the case of REINFORCE is simply the cumulative
discounted rewards.

4.2.1.2 Hyperparameters In our various
training runs for REINFORCE, we used the
Adam Optimizer with a learning rate η = 0.001.
The discount factor γ was set to 0.9, since we
wanted the agent to understand that actions had
long-lasting affects or consequences. This would

be especially important when the aircraft would
make maneuvers that would be at once detrimental
and hard to recover from, e.g. inverted dives.

4.2.1.3 Network Architecture During the
course of our experimentation, we changed
the number of nodes and layers but ultimately
finalized a 4 layer architecture: 1 input layer, 2
hidden layers and 1 output layers. The observation
space information is fed into the input layer so
the number of input nodes equal the number of
input parameters, which in our case was 8. Both
hidden layers had 256 nodes. The output layer
provided us with information of the probability
distribution for each action space item, i.e. a µ
and a σ value for 4 different action space items,
totalling 8 output nodes. Hidden Layer 1 and 2
used the Rectifier Linear Unit (ReLU) activation
functions, and the output layer employed two
different activation functions. Since the value of
the standard deviations can not be below 0, we
used the sigmoid activation function for the σ
values. The value of the mean can range between
-1 and 1, i.e. the range of values for each action
space item, we used the tanh activation function
for the µ values.

4.2.2 Deep Deterministic Policy Gradient
(DDPG)

4.2.2.1 Algorithm DDPG is an off-policy
Actor-Critic Policy Gradient method that uti-
lizes Q-Learning. Actor-Critic methods are well-
suited for problems dealing with continuous ac-
tion spaces [10]. Since we calculate the actions
directly instead of their probability distributions,
DDPG is a deterministic method, hence its name
Deep Deterministic Policy Gradient. Because of
its deterministic nature, there is not much room
for exploration. In order to cater to this, the au-
thors of DDPG [9] introduce Ornstein-Uhlenbeck
(OU) noise. OU Noise has the desired property of
approaching its mean (µ) as t → ∞. In DDPG,
µ = 0, so that as learning continues the noise
becomes closer to zero, and the exploratory be-
haviour of the algorithm diminishes.

In this method there are two policy networks
being trained simultaneously. One network learns
the actual policy to behave optimally given a state,
this network is the Actor. The second network
learns the value function, i.e. its Q Value. This
second network is called the Critic because it criti-
cizes how the Actor network evaluates the rewards
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of a state while updating its parameters. In order to
calculate the loss for the Critic Network, we utilize
2 more networks, i.e. the Target Actor and Target
Critic networks. We utilize a Mean Squared Er-
ror (MSE) loss function for the Critic Network to
show roughly how closely Qφ is to satisfying the
Bellman equation:

L(φ,D) = E
(s,a,r,s′ ,d)∼D

[(Qφ(s, a)−

(r + γ(1− d)max
a′

Qφ(s
′
, a
′
)))2]

Target Actor and Target Critic networks provide
us with the target value:

r + γ(1− d)maxa′Qφ(s
′
, a
′
)

Given all of this, DDPG achieves its objectives
by minimizing the MSE loss with stochastic gradi-
ent descent between the target value and the output
of the Critic network.

In DDPG, we save the state, action taken, re-
ward, the next state, denoted by state’, and the
terminal flag at every step within the episode in
a buffer. After every step, we then train our net-
works over a randomly sampled batch from this
buffer. In our implementation the batch size is
5000. The state and action values are used to gen-
erate the critic value via the Critic network. The
state’ values are used to generate the target actions
using the Target Actor network. The Target Critic
network then uses the state’ and target actions to
generate the target critic values. The Critic net-
work then uses the MSE of the critic value and
target value, as specified in the previous equations
as its loss value and tries to minimize it. The Ac-
tor network uses −Q obtained from the Critic net-
work as its loss value. We then use a soft update
approach to update the Target Actor and Target
Critic networks, using a factor τ .

The Target Critic θQ
′

is updated as follows:

θQ
′
= τθQ + (1− τ)θQ

′

The Target Actor θµ
′

is updated as follows:

θµ
′
= τθµ + (1− τ)θµ

′

4.2.2.2 Network Architecture For all 4 net-
works being used in DDPG, we utilize a network
architecture of 8× 400× 300× 4. The input layer
has 8 nodes for the observation space parameters,

the 2 hidden layers have 400 and 300 nodes re-
spectively and the output layer has 4 nodes, one
for each action. The Actor and Target Actor net-
works use ReLU as the activation function in hid-
den layer 1 and 2, and a tanh activation function
for the values ofµ, bounding them between -1 and
+1. The Critic and Target Critic networks also use
ReLU as their activation functions.

4.2.2.3 Hyperparameters Policy Gradient
methods are notoriously sensitive to hyperparame-
ters. DDPG has a lot of different hyperparameters,
and finding the optimal combination is a chal-
lenge of its own. For the Actor and Target
Actor networks we started with a learning rate
eta = 2.5 × 10−5, and for the Critic and Target
Critic networks we started with a learning rate
eta = 2.5× 10−4. However, we soon determined,
given our reward structure, these learning rates
were too high and so they were changed to
2.5× 10−7 and 2.5× 10−6, respectively.

The buffer was set to 1×106 steps, with a batch
size of 5000. Since the training at every step,
greatly reduced our training pace, we changed the
frequency to every 20 steps. The soft update factor
τ was set to 0.001.

4.2.3 Proximal Policy Optimization
4.2.3.1 Algorithm Proximal Policy Optimiza-
tion like DDPG also belongs to the class of Actor-
Critic methods. To understand the main difference
between vanilla REINFORCE algorithm and PPO,
we need to look into the optimization objectives of
both of these methods.

In the paper Trust Region Policy Optimization
(Schulman et al, 2015) the authors introduced a
concept of Trust Regions to limit the policy gradi-
ent step so it does not move too far from the origi-
nal policy, preventing overly large updates that of-
ten ruin the policy altogether.
For this, they define r(θ) as the probability ratio
between the action under the current policy and
the action under the previous policy.

rtθ =
πθ(at|st)
πθold(at|st)

Given a sequence of sampled actions and states,
r(θ) will be greater than 1 if the particular action
is more probable for the current policy than it
is for the old policy. It will be between 0 and 1
when the action is less probable for our current
policy. Since our action space is continuous and
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we sample the actions from 4 uncorrelated normal
distributions. Therefore, instead of directly
dividing the probabilities of actions, we take
exponentials of probability density functions.

The loss function is defined using the probabil-
ity ratio as follows:

LCLIP (θ) =Êt[min(rt(θ)Ât,

clip(rt(θ), 1− ε, 1 + ε)Ât)]

Here, the expectation is being computed over
a minimum of two terms: normal policy gradi-
ent objective and clipped policy gradient objec-
tive. The second term plays a key role where the
objective value is clamped between 1−ε and 1+ε,
ε being the hyperparameter, which in this paper is
set to 0.2.
Furthermore, because of the min operation, this
objective behaves differently when the advantage
estimate is positive or negative.
One aspect of PPO which makes it more suitable
for our problem is its sample efficiency. It makes
use of a memory replay buffer to store the sam-
ple actions and then trains the model for several
epochs over that data before discarding it, unlike
REINFORCE algorithm where an experience tra-
jectory is used only once to train.

4.2.3.2 Network Architecture PPO was im-
plemented for continuous a well as discrete action
spaces. The primary architecture for actor net-
works for both the problems was same except for
the output layer. The actor network that we uti-
lized consists of 3 hidden layers. Input layer has
8 units to handle observation space, each hidden
layer has 256 units. Output layer for continuous
action space has 8 units representing 4 µ and 4 σ
for all the actions. Whereas, for discrete action
space we trained a separate agent for predicting
each action. The output layer in this case consists
of 11 units representing output values for an ac-
tion. We use ReLU activation function in hidden
layers and in the output layer 4 units use tanh for
limiting µ values between -1 and 1, whereas the
remaining 4 units useELU+0.0001 to keep stan-
dard deviation from becoming negative.

4.2.3.3 Hyperparameters Although PPO was
implemented both in continuous as well as dis-
crete action spaces, however, the hyperparamters
were kept same throughout. A learning rate of
α = 0.0003 was used. The discout factor γ was set

to 0.99 and λ = 0.95 for generalised advantage es-
timation. Policy clip of ε = 0.2 was used in order
to calculate the surrogate objectives. Most of the
hyperparameters were kept same as those in PPO
paper. Since our experiment had a very bad sam-
ple efficiency and it also took longer than 1 minute
to run 1 episode. Therefore, we decided to use a
buffer of size 5000 and aminibatchsize = 100.
Adam optimiser was used to backpropagate the
loss values for 70 epoch during a single training it-
eration. Buffer size of 5000 was chosen keeping in
mind that the agent should have at least more than
1 episode of data so that it is able to learn from ex-
perience of multiple episodes but at the same time
the buffer size was small enough to let the agent do
more frequent learning steps to increase its perfor-
mance.

4.2.4 Soft Actor-Critic

Model-free deep reinforcement learning (RL) al-
gorithms have been shown to be capable of solv-
ing a range of challenging decision making and
control tasks. However, these methods typically
suffer from two major challenges: very high sam-
ple complexity and brittle convergence properties,
which demands a very detailed and intense hy-
perparameter tuning. Both of these challenges
severely limit the applicability of such methods to
complex, real-world domains. Soft actor-critic is
an off-policy actor-critic deep RL algorithm based
on the maximum entropy reinforcement learning
framework. In this framework, the actor aims to
maximize expected reward while also maximizing
entropy. That is, to succeed at the task while act-
ing as randomly as possible.
In Soft Actor-Critic algorithm we consider a
parameterized state value function Vψ(st), soft
Q-function Qθ(st, at), and a tractable policy
πφ(at|st). The parameters of these networks are
ψ, θ, and φ. For example, the value functions can
be modeled as expressive neural networks, and the
policy as a Gaussian with mean and covariance
given by neural networks. The gradient equations
for the above parameters can be written as below.
for the value network:

∇̂ψJV (ψ) = ∇ψVψ(st)(Vψ(st) − Qθ(st, at)

+ logπφ(at|st))

where the actions are sampled according to the
current policy, instead of the replay buffer.
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for the critic network:

∇̂θJQ(θ) = ∇θQθ(st, at)(Qθ(st, at) − r(st, at)

−γVψ(st+1))

The update makes use of a target value network
Vψ, where ψ can be an exponentially moving aver-
age of the value network weights, which has been
shown to stabilize training. However, in our im-
plementation we use an update smoothing con-
stant which mimics soft update. The actor policy
can be updated using the following equations:

at = fφ(εt; st)

using the above defined at:

∇̂φJπ(φ) = ∇φlogπphi(at|st) + (∇at logπφ(at|st)
−∇atQ(st, at))∇φfφ(εt; st)

where at is evaluated at fφ(t; st).

4.2.4.1 Network Architecture Our imple-
mentation of SAC has 1 actor network, 2 critic
networks, 1 value network and 1 target value
network. Number of layers in all the networks
is same; input layer followed by 2 hidden layers,
of 256 units each, followed by an output layer.
Number of units in the input and output layers
of actor, critic and value networks differ. Actor
network has 3 units in the input layer to handle
a simplified observation space of 3 parameters
and output layer consists of 8 units to predict µ
and σ for 4 actions. Critic network has 7 units
in the input layer to handle 3 parameters from
observation space and 4 actions and 1 unit in
the output layer to predict Q-value for the given
state-action pair. Whereas, value network has 3
units in the input layer and 1 in the output layer to
predict value function of the given state.

4.2.4.2 Hyperparameters The soft actor-
critic algorithm makes use of reward scaling as
well as soft target update to fine tune the update
of target network. For all the networks we started
with learning rate (α&β) = 3 × 104, target
value update smoothing constant (τ) = 0.005,
reparameterisation noise for σ = 1 × 10−6.
Initially we used a reward scale of 1 which acts as
a multiplier for the rewards that the agent collects
during an episode, this gives more weight to the
rewards as compared to the Q-value and value
function while backpropagating the loss for the
critic network. By tuning the reward scale we can

balance the exploration-exploitation nature of the
agent. The agent did not explore a lot using the
reward scale of 1. Therefore, we changed it to 10
in the second training iteration. The buffer was
set to 1 × 106 steps, with a batch size of 1024
and number of epochs to 5. After each step, the
agent would perform gradient descent 5 times
using a randomised batch from the experience
replay buffer. This greatly improved the learning
behaviour.

5 Results and Analysis

5.1 REINFORCE

Discussed here is the most promising run of
our REINFORCE algorithm. Initially, the agent
crashes the plane consistently, as is observed in
Figure 3a, however it eventually learns to not crash
and then eventually also starts trying to come back
to 2500m after it has descended past it, as ob-
served in Figure 3b. However, instead of im-
proving upon this, we see in Figure 3c that the
agent continues to descend past the target alti-
tude. This trend continues for several hundred
more episodes, after which the training for this run
was terminated.

5.2 DDPG

We analyze the performance of the agent using five
different metrics. The first metric is the trajectory
of the aircraft during each episode. The second
is the difference between the aircraft’s altitude at
the end of the episode and the specified target al-
titude. The third is the number of successful steps
the aircraft takes in one episode. The fourth is the
running average of the reward accumulated dur-
ing an episode for the last 100 episodes. The last
metric are the loss values for the Critic and Actor
networks.

In our initial implementation, we observed a lot
of promising results. In the first 500 episodes of
training, the plane keeps crashing, as is shown in
Figure 5a. However we see a marked improve-
ment in the flight trajectory as we get closer to
2000 episodes of training, confirmed by Figure 5c.

As we continued to train the agent, upto episode
7780, we saw a deterioration in performance
which the agent did not recover from. This,
we learnt, was because our hyperparameters were
not optimized. One of the hyperparameters that
needed to be corrected was the learning rate,
which was not adequately chosen for our reward
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(a) Episode 30 (b) Episode 120 (c) Episode 240

Figure 3: REINFORCE: Altitude During Episode

(a) Episode 0 - 499 (b) Episode 500 - 999 (c) Episode 1500 - 1999

Figure 4: DDPG - Number of Successful Steps

(a) Episode 0 - 499 (b) Episode 500 - 999
(c) Episode 1500 - 1999

Figure 5: DDPG - Altitude During Episode

structure.
We restarted training our agent with a much

smaller learning rate η = 2.5×10−7 for our Actor
and Target Actor networks and η = 2.5×10−6 for
our Critic and Target Critic networks. We also re-
designed our episode structure so that the episode
started with our aircraft within the target zone, and
it would end once the aircraft flew outside the tar-
get zone. The rationale behind this was to en-
courage the agent to fly within the target zone for
longer.

Our focus now was to use the loss functions of
the Actor and Critic networks as guides to improve
the performance. By tweaking the learning rate we
were able to see an improved performance in terms
of loss, however the agent’s performance still did
not achieve satisfactory levels. We tried different
values and combinations of learning rates, while

also scaling the reward value. In doing so, we
were able to improve the Critic network loss curve
as can be seen from the change from Figure 6a to
Figure 6b. However, due to time constraints, we
were unable to perform an exhaustive grid search
allowing us to determine optimal combination of
the learning rates and other hyperparameters. Be-
cause of this reason, DDPG was unable to yield
satisfactory results, although we were very opti-
mistic about the direction the agent was headed in.

5.3 PPO

PPO was implemented in different setting w.r.t.
the number of networks and type of action space.
Hyperparameters for all the versions of PPO are
given in the index.

8



(a) Actor η = 2.5×10−7 Critic η = 2.5×
10−6

(b) Actor η = 2.5×10−5 Critic η = 2.5×
10−5

Figure 6: DDPG - Actor, Critic Network Losses

5.3.1 Continuous Action Space with 1
Network

Initial implementation was for continuous action
space and the network returns parameters for 4
normal distributions corresponding to the 4 ac-
tions: latitudinal stick, longitudinal stick, rudder
pedals and throttle. Actions were sampled from
the normal distributions to introduce randomness.
However, the results were inconclusive. Average
scores for the last 100 episodes did not show a lot
of variation, as can be seen in Figure 8b and the
descent trajectory that the aircraft followed did not
change either over the course of 500 episodes, as
shown in Figure 7. We realized that the underly-
ing state space was infinitely large for the agent to
learn it in a limited time.

5.3.2 Discrete Action Space with 4 Networks

Following the results of PPO in continuous ac-
tion space, the action space was discretized into
11 equal segments with a step size of 0.2 for the
first 3 actions and with a step size of 0.1 for throt-
tle. Furthermore, a separate network was used for
each action and all the networks were trained sep-
arately. The output layer of each network con-
sisted of 11 units and a softmax activation function
which gives a Categorical probability distribution
over the discretized action.
Despite early crashes, the agent learnt to avoid
them quickly. Just after 500 episodes, it was able
to stay inside the target zone for more than 600

steps on average, as shown in Firgure 9a. The
flight trajectory figure below shows the altitude
during episode 1850 (although the plot title says
episode 40, but that is because plot data was not
being saved during each training run). The agent
was trained for over 2000 episode with satisfac-
tory results for episodes of 2000 steps. However,
when the agent was tested, it could not maintain
altitude after 2000 steps. We realized that although
the agent was showing a positive trend towards the
behavior it was supposed to learn, however, it still
had not fully learned. An episode with 2000 steps
was simply not long enough for it experience a
wide array of states.

5.4 Soft Actor-Critic

We performed 2 iterations of Soft Actor-Critic al-
gorithm by changing some hyperparamters. The
second iteration showed good results.

5.4.1 Reward Scale = 1
During the training the agent seemed very conser-
vative in exploration despite being formulated on
entropy maximization framework. In Figure 10 it
can be observed that the trajectory of the aircraft
during the episodes 663-673 is almost the same as
that during the episodes 11-21. The scores also
plateaued as can be seen in the figure.

5.4.2 Reward Scale = 10
For the second training iteration we had very lim-
ited amount of time available, therefore, to make
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(a) Episode 10 (b) Episode 490

Figure 7: PPO - Altitude During Episode

(a) PPO - Number of Successful Steps (b) PPO - Avg score of last 100 episodes

Figure 8: PPO - Continuous Action Space

(a) PPO - Number of Successful Steps (b) PPO - Avg score of last 100 episodes

Figure 9: PPO - Discrete Action Space

the model simpler for the agent we reduced the ob-
servation space to 3 parameters and also included a
hard coded condition for aileron. This hard coded

rule keeps the aircraft’s bank angle within ±10◦.

We can observe from above figures that the
agent not only started exploring more, but it also
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(a) Episode 11 - 21 (b) Episode 663 - 673

Figure 10: SAC - Altitude During Episode

(a) SAC - Number of Successful Steps (b) SAC - Avg score of last 100 episodes

Figure 11

(a) Episode 1 - 11 (b) Episode 321-331

Figure 12: SAC - Altitude During Episode

recovered from crashed very quickly, since the re-
ward was being weighted more while performing
gradient descent of critic network. The model was
trained followed by 3 tests where the initial alti-
tude was 1836 m.

• Descend to an altitude of 1600m

• Descend to an altitude of 1200m

• Climb to an altitude of 2000m

The agent successfully accomplished the above
tests. Results of the above tests were shown in the
form of a demo video.
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6 Discussion

6.1 Limitations
The earlier phase of the project presented us with
a very steep learning curve as we had a very lim-
ited experience of working with RL problems. The
second challenge that we faced was that there was
no open source environment wrapper available for
X-Plane 11. Therefore, significant time and efforts
were spent on writing and debugging the environ-
ment ourselves using X-Plane Connect.
A reinforcement learning agent can take days to
train even for seemingly easier tasks in simpler do-
mains but when the underlying agents are compli-
cated and close to reality like X-Plane 11, training
time requirement can increase exponentially. We
were limited by compute resources as well as by
the number of training instances that we could run
in parallel since a separate license needs to be pur-
chased to run each instance of X-Plane 11. There-
fore, we could not benefit from asynchronous ver-
sions of actor-critic algorithms.

6.2 Future Work
In this work different approaches are presented to
develop an RL agent with the ability to learn to
change altitude based on on-policy as well as off-
policy algorithms. The experiments were a strong
indicator towards the ability of off-policy algo-
rithms to learn the models quickly.
Future efforts will include work on a more intu-
itive reward function representative of the exper-
iment goals in a better way. We have seen that
off-policy algorithms are very sensitive to hyper-
parameters. Therefore, significant improvement
in results can be expected with careful hyperpa-
rameter tuning. During the semester we were con-
strained by time as well as compute power. Ex-
ploring cloud resources compatible with the sim-
ulator can provide an opportunity to not only im-
prove the compute efficiency but also to run mul-
tiple experiments in parallel.
The results which we see after hard-coding aileron
action to maintain the attitude during the experi-
ment is indicative that curriculum learning can be
a very interesting approach to explore in this con-
text. It can be extended to include a wider spec-
trum of tasks. A curriculum based on increas-
ingly complicated tasks assisted by relevant train-
ing data for learning by imitation can help the
agent learn more complicated and realistic tasks
including taking off, waypoint following and fly-

ing in close formation.

7 Conclusion

Our objective for this project was to experi-
ment with different Reinforcement Learning algo-
rithms, to determine the best performing approach
in order for an Intelligent Autopilot System to be
able to learn various flight maneuvers. We broke
our goal further down to first learning to change al-
titude as desired. With this target determined, we
implemented 4 different RL algorithms: REIN-
FORCE, PPO, DDPG and SAC. Our discussion in
Section 5 analyzes the performance of these algo-
rithms. REINFORCE, it was determined, was not
adequate for our application since it was compu-
tationally inefficient and the scope of the problem
was too large. PPO and DDPG showed promis-
ing results with some training cycles displaying
desired behaviour. However, ultimately the train-
ing of both of these algorithms did not converge to
a perfect model. In the end, it was SAC that was
able to achieve the goal of changing aircraft alti-
tude to maintain it around the desired target alti-
tude, including both descent and ascent scenarios.

Through this project, we were able to fully im-
merse ourselves within the realm of Reinforce-
ment Learning and Policy Gradient methods, and
have been increasingly motivated by the results we
encountered, including successfully achieving our
target objective. Moving forward we will continue
to work on the tasks delineated in Section 6.2,
with the goal of achieving an improved and real-
istic autopilot agent and contributing positively to
the space of IAS and RL research.
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